Sialic acid catabolism confers a competitive advantage to pathogenic vibrio cholerae in the mouse intestine.
نویسندگان
چکیده
Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae DeltananA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment.
منابع مشابه
Host-Derived Sialic Acids Are an Important Nutrient Source Required for Optimal Bacterial Fitness In Vivo
UNLABELLED A major challenge facing bacterial intestinal pathogens is competition for nutrient sources with the host microbiota.Vibrio cholerae is an intestinal pathogen that causes cholera, which affects millions each year; however, our knowledge of its nutritional requirements in the intestinal milieu is limited. In this study, we demonstrated that V. cholerae can grow efficiently on intestin...
متن کاملExpression of Recombinant Protein B Subunit Pili from Vibrio Cholera
Background & Aims: Vibrio cholerae is a gram-negative bacterial pathogen that causes cholera disease. Following ingestion by a host and entry into the upper intestine, V. cholera colonizes and begins to emit enterotoxin. One of the most pathogenic factors of Vibrio cholera is toxin-coregulated pili (TCP). ToxinCoregulated pili is as the primary factor requiered for the colonization and insisten...
متن کاملHyperinfectivity of human-passaged Vibrio cholerae can be modeled by growth in the infant mouse.
It has previously been shown that passage of Vibrio cholerae through the human intestine imparts a transient hyperinfectious phenotype that may contribute to the epidemic spread of cholera. The mechanism underlying this human-passaged hyperinfectivity is incompletely understood, in part due to inherent difficulties in recovering and studying organisms that are freshly passed in human stool. Her...
متن کاملOccurrence of Pathogenic Vibrios in Coastal Areas of Golestan Province in Iran
This study was carried out to investigate the occurrence of potentially pathogenic species of vibrio in sea water and estuarine environments of the Caspian Sea in the Golestan province of Iran. A total of 127 water samples from coastal waters as well as from river and estuaries were collected and analyzed by culture, during April and September 2001. Following prompt centrifugation, the resusp...
متن کاملCompetitive growth advantage of nontoxigenic mutants in the stationary phase in archival cultures of pathogenic Vibrio cholerae strains.
Spontaneous nontoxigenic mutants of highly pathogenic Vibrio cholerae O1 strains accumulate in large numbers during long-term storage of the cultures in agar stabs. In these mutants, production of the transcriptional regulator ToxR was reduced due to the presence of a mutation in the ribosome-binding site immediately upstream of the toxR open reading frame. Consequently, the ToxR-dependent viru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 77 9 شماره
صفحات -
تاریخ انتشار 2009